Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 265(Pt 2): 131018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38518928

RESUMO

As a "silent threat," Alzheimer's disease (AD) is quickly rising to the top of the list of costly and troublesome diseases facing humanity. It is growing to be one of the most troublesome and expensive conditions, with annual health care costs higher than those of cancer and comparable to those of cardiovascular disorders. One of the main pathogenic characteristics of AD is the deficiency of the neurotransmitter acetylcholine (ACh) which plays a vital role in memory, learning, and attention. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play a crucial role in hydrolyzing ACh. Consequently, a frequent therapy approach for AD is the suppression of AChE and BChE to improve cholinergic neurotransmission and reduce cognitive symptoms. The accumulation of amyloid plaques (Aß) is a primary factor contributing to neurodegenerative diseases, particularly AD. Glycogen synthase kinase-3ß (GSK3-ß) is regarded as a pivotal player in the pathophysiology of AD since dysregulation of this kinase affects all major hallmarks of the disease, such as tau phosphorylation, Aß aggregation, memory, neurogenesis, and synaptic function. One of the most challenging and risky issues in modern medicinal chemistry is the urgent and ongoing need for the study and development of effective therapeutic candidates for the treatment of AD. A significant class of heterocyclic molecules that can target the complex and multifactorial pathogenesis of AD are fused thiophene derivatives. The goal of the current review is to demonstrate the advancements made in fused thiophene derivatives' anti-AD activity. It also covers their mechanisms of action and studies of the structure-activity relationships in addition to the compilation of significant synthetic routes for fused thiophene derivatives with anti-AD potential. This review is intended to stimulate new ideas in the search for more rationale designs of derivatives based on fused thiophene, hoping to be more potent in treating AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Butirilcolinesterase , Acetilcolinesterase , Quinase 3 da Glicogênio Sintase/uso terapêutico , Monoaminoxidase , Acetilcolina , Peptídeos beta-Amiloides , Glicogênio Sintase Quinase 3 beta
2.
RSC Adv ; 14(11): 7664-7675, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38440282

RESUMO

A series of new sulfonamide derivatives connected through an imine linker to five or seven membered heterocycles were designed and synthesized. All synthesized derivatives were characterized using a variety of spectroscopic methods, including IR, 1HNMR, and 13CNMR. In vitro α-glucosidase and α-amylase inhibition activities, as well as glucose uptake were assessed for each of the synthesized compounds. Four sulfonamide derivatives namely 3a, 3b, 3h and 6 showed excellent inhibitory potential against α-glucosidase with IC50 values of 19.39, 25.12, 25.57 and 22.02 µM, respectively. They were 1.05- to 1.39-fold more potent than acarbose. Sulfonamide derivatives 3g, 3i and 7 (EC50 values of 1.29, 21.38 and 19.03 µM, respectively) exhibited significant glucose uptake activity that were 1.62- to 27-fold more potent than berberine. Both α-glucosidase protein (PDB: 2QMJ) and α-amylase (PDB: 1XCW) complexed with acarbose were adopted for docking investigations for the most active synthesized compounds. The docked compounds were able to inhabit the same space as the acarviosin ring of acarbose. The docking of the most active compounds showed an analogous binding with the active site of α-glucosidase as acarbose. The superior activity of the synthesized compounds against α-glucosidase enzyme than α-amylase enzyme can be rationalized by the weak interaction with the α-amylase. The physiochemical parameters of all synthesized compounds were aligned with Lipinski's rule of five.

3.
Bioorg Chem ; 144: 107158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301427

RESUMO

A new series of pyranopyrazole-based derivatives were designed and synthesized. The synthesized compounds were assessed for their cytotoxic efficacy against A549 human lung carcinoma and MCF-7 human breast carcinoma cell lines. Three compounds (1b, 4b, and 7b) exhibited 1.3- to 2.3-fold more antiproliferative activity than that of doxorubicin against the A549 cell line. In comparison to doxorubicin, compounds 1d and 3b were 4.1- and 1.04-fold, respectively more powerful against MCF-7 cancer cells. All the synthesized compounds were found to be more selective toward A549 cancer cells than the normal human fibroblast BJ cells. Of interest, compounds 1b and 7b exhibited promising cytotoxicity and SIs of 27.72 and 25.30, respectively, towards A549 cancer cells, higher than that of doxorubicin (SI 4.81). The most potent compounds 1b, 1d, 3b, 4b, and 7b were then subjected to in vitro Topo II inhibition assay. They showed IC50 values in the range of 2.07 to 8.86 µM. Of particular interest, compound 7b (IC50 = 2.07 µM), exhibited higher Topo II inhibitory activity than that of doxorubicin (IC50 = 2.56 µM). The significant Topo II inhibition of compound 7b was explained by molecular docking simulations into the Topo II active site. Compound 7b halted the cell cycle in the S phase in A549 cancer cells. It induced total apoptosis and necrosis of 20.73- and 4-fold, respectively, greater than the control. This evidence was supported by a 3.59-fold increase in the level of apoptotic caspase-9 and a remarkable elevation of the Bax/BCL-2 ratio. The physiochemical parameters of compound 7b were aligned with Lipinski's rule of five.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase II , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Antineoplásicos/química , Doxorrubicina/farmacologia , Apoptose , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
4.
Curr Pharm Des ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303528

RESUMO

Due to its important biological and pharmacological properties, in the field of medicinal chemistry and drug discovery, the N-acylhydrazone motif has shown to be extremely adaptable and promising. This scaffold has become a crucial component in the synthesis of numerous bioactive agents. N-Acylhydrazones are also interesting biological and synthetic tools due to their easy and straightforward synthesis. The current review provides a summary of the analgesic and anti-inflammatory activities of N-acylhydrazone derivatives over the past ten years. A brief discussion of structure-activity relationships is also provided which may guide researchers in medicinal chemistry to develop derivatives based on N-acylhydrazone scaffold as potent anti-inflammatory candidates.

5.
Chem Biodivers ; 20(11): e202301143, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37857580

RESUMO

The combination of antibacterial and antiviral agents is becoming a very important aspect of dealing with resistant bacterial and viral infections. The N-phenylthiazole scaffold was found to possess significant anti-MRSA, antifungal, and anti-COVID-19 activities as previously published; hence, a slight refinement was proposed to attach various alkyne lipophilic tails to this promising scaffold, to investigate their effects on the antimicrobial activity of the newly synthesized compounds and to provide a valuable structure-activity relationship. Phenylthiazole 4 m exhibited the most potent anti-MRSA activity with 8 µg/mL MIC value. Compounds 4 k and 4 m demonstrated potent activity against Clostridium difficile with MIC values of 2 µg/mL and moderate activity against Candida albicans with MIC value of 4 µg/mL. When analyzed for their anti-COVID-19 inhibitory effect, compound 4 b emerged with IC50 =1269 nM and the highest selectivity of 138.86 and this was supported by its binding score of -5.21 kcal mol-1 when docked against SARS-CoV-2 M pro . Two H-bonds were formed, one with His164 and the other with Met49 stabilizing phenylthiazole derivative 4 b, inside the binding pocket. Additionally, it created two arene-H bonds with Asn142 and Glu166, through the phenylthiazole scaffold and one arene-H bond with Leu141 via the phenyl ring of the lipophilic tail.


Assuntos
Antibacterianos , Antifúngicos , Antifúngicos/química , Antibacterianos/química , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
6.
Arch Pharm (Weinheim) ; 356(8): e2300102, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37279368

RESUMO

Being an isostere of the purine nucleus, which is found in naturally occurring nucleotides like ATP and other naturally available substances, benzotriazole is not surprising for its broad-spectrum biological activity. Benzotriazole is widely used by medicinal chemists as a privileged scaffold for the identification and development of novel bioactive compounds and drug candidates. Additionally, benzotriazole is a structural motif of seven pharmaceuticals; some of these compounds are approved, commercially available medications, while others are experimental drugs still under investigation. This review highlights the defining role of benzotriazole derivatives in the search for potential anticancer agents published in the literature from 2008 to 2022; it also discusses their mechanisms of action and structure-activity relationship investigations.


Assuntos
Antineoplásicos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Triazóis/farmacologia , Triazóis/química
7.
Bioorg Chem ; 136: 106548, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37094479

RESUMO

The DNA topoisomerase enzymes are widely distributed throughout all spheres of life and are necessary for cell function. Numerous antibacterial and cancer chemotherapeutic drugs target the various topoisomerase enzymes because of their roles in maintaining DNA topology during DNA replication and transcription. Agents derived from natural products, like anthracyclines, epipodophyllotoxins and quinolones, have been widely used to treat a variety of cancers. A very active field of fundamental and clinical research is the selective targeting of topoisomerase II enzymes for cancer treatment. This thematic review summarizes the recent advances in the anticancer activity of the most potent topoisomerase II inhibitors (anthracyclines, epipodophyllotoxins and fluoroquinolones) their modes of action, and structure-activity relationships (SARs) organized chronologically in the last ten years from 2013 to 2023. The review also highlights the mechanism of action and SARs of promising new topoisomerase II inhibitors.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase II , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/farmacologia , DNA Topoisomerases Tipo II , Podofilotoxina , Antraciclinas , Inibidores da Topoisomerase I
8.
Drug Dev Res ; 84(5): 937-961, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37067008

RESUMO

A series of 12 S-substituted tetrahydrobenzothienopyrimidines were designed and synthesized based on the donepezil scaffold. All the newly synthesized compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activity and the most active compounds were tested for their butyrylcholinesterase (BuChE) inhibitory activity. Moreover, all the synthesized compounds were evaluated for their inhibitory effects against Aß aggregation and antioxidant activity using the oxygen radical absorbance capacity method. Compounds 4b, 6b, and 8b displayed the most prominent AChE inhibitory action comparable to donepezil. Compound 6b showed the greatest AChE inhibitory action (IC50 = 0.07 ± 0.003 µM) and the most potent BuChE inhibitory action (IC50 = 0.059 ± 0.004 µM). Furthermore, the three compounds exhibited significant antioxidant activity. Compounds 6b and 8b exerted more inhibitory action on Aß aggregation than donepezil. The cytotoxic activity of compounds 4b, 6b, and 8b against the WI-38 cell line in comparison with donepezil was examined using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay. The results revealed that compounds 6b and 8b were less cytotixic than donepezil, while compound 4b showed nonsignificant cytotoxicity compared to donepezil. For more insights about the binding patterns of the most promising compounds (4b, 6b, and 8b) with the AChE at molecular levels; molecular docking and molecular dynamics simulations were performed. The density functional theory calculations and absorption, distribution, metabolism, excretion and toxicity properties were described as well. The results highlighted compound 6b, which incorporates a phenylpiperazine moiety coupled to a thienopyrimidone scaffold via two-atom spacer, to be a promising multifunctional therapeutic agent for the treatment of Alzheimer's disease. It is a potent dual AChE and BuChE inhibitor. Furthermore, it had stronger Aß aggregation inhibitory action than donepezil. Additionally, compound 6b exerted significant antioxidant activity.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Donepezila/farmacologia , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Antioxidantes/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Desenho de Fármacos
9.
Arch Pharm (Weinheim) ; 356(5): e2200548, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36638264

RESUMO

The N-acylhydrazone motif has been shown to be particularly adaptable and promising in the area of medicinal chemistry and drug development, due to its significant biological and pharmacological characteristics. Moreover, N-acylhydrazones are appealing synthetic and biological tools because of their simple and straightforward synthesis. This scaffold has emerged as a fundamental building block for the synthesis of bioactive compounds. Particularly, the N-acylhydrazone scaffold served as a base for the synthesis of a number of potent anticancer agents acting via different mechanisms. An updated summary of the anticancer activity of N-acylhydrazone derivatives described in the literature (from 2017 to 2022) is provided in the current review. It discusses the structure-activity relationship (SAR) of N-acylhydrazone derivatives exhibiting anticancer potential, which could be helpful in designing and developing new derivatives as effective antiproliferative candidates in the future.


Assuntos
Antineoplásicos , Hidrazonas , Relação Estrutura-Atividade , Antineoplásicos/química , Desenho de Fármacos , Desenvolvimento de Medicamentos
10.
J Enzyme Inhib Med Chem ; 38(1): 118-137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36305290

RESUMO

A series of novel ciprofloxacin (CP) derivatives substituted at the N-4 position with biologically active moieties were designed and synthesised. 14 compounds were 1.02- to 8.66-fold more potent than doxorubicin against T-24 cancer cells. Ten compounds were 1.2- to 7.1-fold more potent than doxorubicin against PC-3 cancer cells. The most potent compounds 6, 7a, 7b, 8a, 9a, and 10c showed significant Topo II inhibitory activity (83-90% at 100 µM concentration). Compounds 6, 8a, and 10c were 1.01- to 2.32-fold more potent than doxorubicin. Compounds 6 and 8a induced apoptosis in T-24 (16.8- and 20.1-fold, respectively compared to control). This evidence was supported by an increase in the level of apoptotic caspase-3 (5.23- and 7.6-fold, sequentially). Both compounds arrested the cell cycle in the S phase in T-24 cancer cells while in PC-3 cancer cells the two compounds arrested the cell cycle in the G1 phase. Molecular docking simulations of compounds 6 and 8a into the Topo II active site rationalised their remarkable Topo II inhibitory activity.


Assuntos
Antineoplásicos , DNA Topoisomerases Tipo II , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Ciprofloxacina/farmacologia , Ciprofloxacina/química , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
11.
Arch Pharm (Weinheim) ; 356(1): e2200398, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36149034

RESUMO

Alzheimer's disease (AD) is one of the most prevalent geriatric diseases and a significant cause of high mortality. This crippling disorder is becoming more prevalent at an unprecedented rate, which has led to an increase in the financial cost of caring. It is a pathologically complicated, multifactorial disease characterized by ß-amyloid precipitation, ß-amyloid oligomer production, decrease in cholinergic function, and dysregulation of other neurotransmitter systems. Due to the pathogenic complexity of AD, multitarget drugs that can simultaneously alternate multiple biological targets may enhance the therapeutic efficacy. Donepezil (DNP) is the most potent approved drug for the treatment of AD. It has a remarkable effect on a number of AD-related processes, including cholinesterase activity, anti-Aß aggregation, oxidative stress, and more. DNP resembles an excellent scaffold to be hybridized with other pharmacophoric moieties having biological activity against AD pathological factors. There have been significant attempts made to modify the structure of DNP to create new bioactive chemical entities with novel structural patterns. In this review, we highlight recent advances in the development of multiple-target DNP-hybridized models for the treatment of AD that can be used in the future in the rational design of new potential AD therapeutics. The design and development of new drug candidates for the treatment of AD using DNP as a molecular scaffold have also been reviewed and summarized.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Donepezila/farmacologia , Donepezila/química , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides
12.
Arch Pharm (Weinheim) ; 356(1): e2200424, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36192144

RESUMO

The pyrazolo[3,4-d]pyrimidine core has received a lot of interest from the medicinal chemistry community as a promising framework for drug design and discovery. It is an isostere of the adenine ring of adenosine triphosphate, which allows it to mimic kinase active site hinge region binding contacts. This scaffold has a wide pharmacological and biological value, one of which is as an anticancer agent. Many successful anticancer medicines have been designed and synthesized using pyrazolo[3,4-d]pyrimidine as a key pharmacophore. The main synthetic routes of pyrazolo[3,4-d]pyrimidines as well as their recent developments as promising anticancer agents acting as endothelial growth factor receptors and vascular endothelial growth factor receptor inhibitors, published in the time frame from 1999 to 2022, are summarized in this review to set the direction for the design and synthesis of novel pyrazolo[3,4-d]pyrimidine derivatives for clinical deployment in cancer treatment.


Assuntos
Antineoplásicos , Fator A de Crescimento do Endotélio Vascular , Relação Estrutura-Atividade , Antineoplásicos/química , Pirimidinas/química , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/química
13.
Curr Pharm Des ; 28(43): 3469-3477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36424796

RESUMO

Antimicrobial resistance is an aggravating global issue therefore it has been under extensive research in an attempt to reduce the number of antibiotics that are constantly reported as obsolete jeopardizing the lives of millions worldwide. Thiazoles possess a reputation as one of the most diverse biologically active nuclei, and phenylthiazoles are no less exceptional with an assorted array of biological activities such as anthelmintic, insecticidal, antimicrobial, antibacterial, and antifungal activity. Recently phenyl thiazoles came under the spotlight as a scaffold having strong potential as an anti-MRSA lead compound. It is a prominent pharmacophore in designing and synthesizing new compounds with antibacterial activity against multidrug-resistant bacteria such as MRSA, which is categorized as a serious threat pathogen, that exhibited concomitant resistance to most of the first-line antibiotics. MRSA has been associated with soft tissue and skin infections resulting in high death rates, rapid dissemination, and loss of millions of dollars of additional health care costs. In this brief review, we have focused on the advances of phenylthiazole derivatives as potential anti-MRSA from 2014 to 2021. The review encompasses the effect on biological activity due to combining this molecule with various synthetic pharmacophores. The physicochemical aspects were correlated with the pharmacokinetic properties of the reviewed compounds to reach a structure-activity relationship profile. Lead optimization of phenyl thiazole derivatives has additionally been outlined where the lipophilicity of the compounds was balanced with the metabolic stability and oral solubility to aid the researchers in medicinal chemistry, design, and synthesizing effective anti- MRSA phenylthiazoles in the future.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/química , Relação Estrutura-Atividade , Farmacorresistência Bacteriana Múltipla , Tiazóis/farmacologia , Testes de Sensibilidade Microbiana
14.
Arch Pharm (Weinheim) ; 355(11): e2200190, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35976138

RESUMO

Series of new celecoxib analogs were synthesized to assess their anticancer activity against the MCF-7 cell line. Four compounds, 3a, 3c, 5b, and 5c, showed 1.4-9.2-fold more potent anticancer activity than celecoxib. The antiproliferative activity of the most potent compounds, 3c, 5b, and 5c, seems to be associated well with their ability to induce apoptosis in MCF-7 cells (18-24-fold). This evidence was supported by an increase in the expression of the tumor suppressor gene p53 (4-6-fold), the elevation in the Bax/BCL-2 ratio, and a significant increase in the level of active caspase-7 (4-7-fold). Moreover, compounds 3c and 5c showed significant cyclooxygenase-2 (COX-2) inhibitory activity. They were also docked into the crystal structure of the COX-2 enzyme (PDB ID: 3LN1) to understand their mode of binding.


Assuntos
Antineoplásicos , Inibidores de Ciclo-Oxigenase 2 , Celecoxib/farmacologia , Ciclo-Oxigenase 2/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/química , Pirazóis/farmacologia , Pirazóis/química , Relação Estrutura-Atividade , Apoptose , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
15.
Arch Pharm (Weinheim) ; 355(12): e2200326, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35996360

RESUMO

Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID) designed to be a selective cyclooxygenase-2 (COX-2) inhibitor. It was approved by the U.S. Food and Drug Administration for the treatment of inflammatory diseases such as osteoarthritis and rheumatoid arthritis. Additionally, celecoxib demonstrated potent antitumor and chemopreventive effects in vitro, in vivo, and in patients. The mechanism of celecoxib's chemopreventive effect is still not fully identified, but it is assumed to be multifactorial. Celecoxib's anticancer activity has been described both as independent of and dependent on its COX-2 inhibitory activity. The current review summarizes the recent advances published between 2000 and 2022 on the structure-based optimization of celecoxib to develop compounds with promising anticancer activity. The structure-activity relationships of celecoxib analogs are discussed, which may be beneficial in the design and development of novel analogs as potent antiproliferative agents in the future.


Assuntos
Antineoplásicos , Sulfonamidas , Humanos , Celecoxib/farmacologia , Sulfonamidas/farmacologia , Pirazóis/farmacologia , Relação Estrutura-Atividade , Inibidores de Ciclo-Oxigenase 2/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ciclo-Oxigenase 2 , Anti-Inflamatórios não Esteroides/farmacologia
16.
Drug Dev Res ; 83(6): 1394-1407, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35749685

RESUMO

A series of tetrahydrobenzothienopyrimidines and tetrahydrobenzothienotriazines incorporating a pharmacophore from donepezil molecule were designed and synthesized. The 12 newly synthesized compounds were screened for their inhibition activity against acetylcholinesterase enzyme (AChE). Compounds that exerted the most potent AChE inhibitory action were further evaluated for their BChE inhibitory activity. In addition, the inhibitory effects of all newly synthesized compounds on Aß and reactive oxygen species were assessed. Compounds 4d, 10b, and 10c showed potent inhibitory activity on AChE comparable to donepezil. Compound 10b (IC50 = 0.124 ± 0.006 nM) showed the greatest AChE inhibitory action and the most potent BChE inhibitory action (IC50 = 0.379 ± 0.02 nM). These three compounds showed more inhibitory action on Aß accumulation than donepezil. Moreover, they showed potent antioxidant activity. The binding pattern of compounds 4d and 10b into AChE active site rationalized their remarkable AChE inhibitory activity. Taken together, these results indicated that these derivatives could be promising multifunctional agents for Alzheimer's disease management.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/química , Donepezila/farmacologia , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pirimidinas , Relação Estrutura-Atividade
17.
Arch Pharm (Weinheim) ; 355(8): e2200067, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35532263

RESUMO

The pyridazinone core has emerged as a leading structure for fighting inflammation, with low ulcerogenic effects. Moreover, easy functionalization of various ring positions of the pyridazinone core structure makes it an attractive synthetic and therapeutic target for the design and synthesis of anti-inflammatory agents. The present review surveys the recent advances of pyridazinone derivatives as potential anti-inflammatory agents to provide insights into the rational design of more effective anti-inflammatory pyridazinones.


Assuntos
Anti-Inflamatórios não Esteroides , Piridazinas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/química , Humanos , Inflamação/tratamento farmacológico , Relação Estrutura-Atividade
18.
Med Chem ; 18(8): 903-914, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264093

RESUMO

BACKGROUND: Breast cancer is currently the leading cause of worldwide cancer incidence exceeding lung cancer. In addition, breast cancer accounts for 1 in 4 cancer cases and 1 in 6 cancer deaths among women. Cytotoxic chemotherapy is still the main therapeutic approach for patients with metastatic breast cancer. OBJECTIVE: The aim of the study was to synthesize a series of novel celecoxib analogues to evaluate their anticancer activity against the MCF-7 cell line. METHODS: Our design of target compounds was based on preserving the pyrazole moiety of celecoxib attached to two phenyl rings, one of them having a polar hydrogen bonding group (sulfonamide or methoxy group). The methyl group of the second phenyl ring was replaced with chlorine or bromine atom. Finally, the trifluoromethyl group was replaced with arylidene hydrazine-1-carbonyl moiety, which is substituted either with fluoro or methoxy group, offering various electronic and lipophilic environments. These modifications were carried out to investigate their effects on the antiproliferative activity of the newly synthesized celecoxib analogues and to provide a valuable structure- activity relationship. RESULTS: Four compounds, namely 4e-h, exhibited significant antitumor activity. Compounds 4e, 4f and 4h showed 1.2-2 folds more potent anticancer activity than celecoxib. Celecoxib analogue 4f showed the most potent anti-proliferative activity. Its anti-proliferative activity seems to associate well with its ability to inhibit BCL-2. Moreover, activation of the damage response pathway of the DNA leads to cell cycle arrest at the G2/M phase and accumulation of cells in the pre-G1 phase, indicating that cell death proceeds through an apoptotic mechanism. Compound 4f exhibited a potent pro-apoptotic effect via induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was proved by a significant increase in the expression of the tumor suppressor gene p53, elevation in Bax/BCL-2 ratio, and a significant increase in the level of active caspase-7. Furthermore, compound 4f showed moderate COX-2 inhibitory activity. CONCLUSION: Celecoxib analogue 4f is a promising multi-targeted lead for the design and synthesis of potent anticancer agents.


Assuntos
Antineoplásicos , Neoplasias da Mama , Celecoxib , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Celecoxib/análogos & derivados , Celecoxib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Relação Estrutura-Atividade
19.
Arch Pharm (Weinheim) ; 355(6): e2100470, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35244962

RESUMO

Pyrazolo[3,4-d]pyrimidine as a bioisostere of purine has drawn considerable attention as a privileged scaffold for the design and discovery of novel drugs. Green synthesis is an emerging area in the field of chemistry that provides economic and environmental benefits as an alternative to traditional methods. The present mini review reflects recent advances in the green synthesis of pyrazolo[3,4-d]pyrimidines, published in the time frame from 2006 to 2019.


Assuntos
Pirazóis , Pirimidinas , Relação Estrutura-Atividade
20.
J Enzyme Inhib Med Chem ; 36(1): 922-939, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33896327

RESUMO

Novel tolmetin derivatives 5a-f to 8a-c were designed, synthesised, and evaluated for antiproliferative activity by NCI (USA) against a panel of 60 tumour cell lines. The cytotoxic activity of the most active tolmetin derivatives 5b and 5c was examined against HL-60, HCT-15, and UO-31 tumour cell lines. Compound 5b was found to be the most potent derivative against HL-60, HCT-15, and UO-31 cell lines with IC50 values of 10.32 ± 0.55, 6.62 ± 0.35, and 7.69 ± 0.41 µM, respectively. Molecular modelling studies of derivative 5b towards the VEGFR-2 active site were performed. Compound 5b displayed high inhibitory activity against VEGFR-2 (IC50 = 0.20 µM). It extremely reduced the HUVECs migration potential exhibiting deeply reduced wound healing patterns after 72 h. It induced apoptosis in HCT-15 cells (52.72-fold). This evidence was supported by an increase in the level of apoptotic caspases-3, -8, and -9 by 7.808-, 1.867-, and 7.622-fold, respectively. Compound 5b arrested the cell cycle in the G0/G1 phase. Furthermore, the ADME studies showed that compound 5b possessed promising pharmacokinetic properties.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Tolmetino/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Tolmetino/síntese química , Tolmetino/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...